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Abstract

In this paper we present a precise measurement of the total ZZ production cross section in

pp collisions at
√

s= 1.96 TeV, using data collected with the CDF II detector corresponding to

an integrated luminosity of approximately 6 fb−1. The result is obtained by combining separate

measurements in the four-charged (ℓℓℓ′ℓ′), and two-charged-lepton and two-neutral-lepton (ℓℓνν)

decay modes of the Z. The combined measured cross section for pp → ZZ is 1.64+0.44
−0.38 pb. This

is the most precise measurement of the ZZ production cross section in 1.96 TeV pp collisions to

date.
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The production of a Z boson pair is rare in the standard model of particle physics (SM),

and has a cross section of 1.4 ± 0.1 pb for pp collisions at 1.96 TeV, calculated at next-to-

leading order (NLO) [1]. The production rate can be enhanced by a variety of new physics

contributions, such as anomalous trilinear gauge couplings [2] or large extra dimensions [3].

Therefore, a precise measurement of this process provides a fundamental test of the SM. A

good understanding of ZZ production, along with that of the other massive diboson pro-

cesses (WW , WZ), is an essential component of new physics searches including searches for

the Higgs boson, since these processes share similar experimental signatures. ZZ production

was first studied at the LEP e+e− collider at CERN [4, 5, 6, 7] and later investigated at the

Tevatron pp collider [8, 9]. WW [10] and WZ [11] production has already been observed and

precisely measured. CDF did report strong evidence for ZZ production in the four-charged-

lepton decay channel ZZ → ℓℓℓ′ℓ′ and the two-charged-lepton decay channel ZZ → ℓℓνν,

measuring σ(ZZ)=1.4+0.7
−0.6 pb with a significance of 4.4 σ using data corresponding to 1.9

fb−1 of integrated luminosity [8]. Recently D0 reported a measurement in the four-lepton

channel, using 6.4 fb−1 of integrated luminosity [9] which has been combined with a result

based on the ℓℓνν final state, using 2.7 fb−1 of integrated luminosity [12], giving a combined

measured cross section σ(ZZ)=1.40+0.45
−0.40 pb with a significance of more than 6σ. CMS [13]

and ATLAS [14] have also both reported measurements of the ZZ cross-section in 7 TeV pp

collisions produced by the Large Hadron Collider (LHC).

In this Letter, we present a new measurement of the ZZ production cross section using

data from approximately 6 fb−1 of integrated luminosity collected by the CDF II detector

[15] at the Tevatron. A search for new ZZ resonances using the same data set is reported in

[16]. With respect to the previous measurement, we exploit not only the increased quantity

of data, but also improved analysis techniques. We consider both the ℓℓℓ′ℓ′ and ℓℓνν decay

channels, where ℓ and ℓ′ are electrons or muons coming from the Z decay or from the

leptonic decay of a τ in the case where a Z boson decays to a τ pair. The full process

we consider is pp → Z/γ∗Z/γ∗, but the ℓℓℓ′ℓ′ and ℓℓνν final states differ in their decay

kinematic acceptance, because of the different γ∗ couplings to charged leptons and neutrinos.

We therefore apply a correction factor to our results to normalize the measurements to the

inclusive ZZ total cross section calculated in the zero-width approximation. For brevity,

hereafter we will refer to Z/γ∗Z/γ∗ as ZZ, unless otherwise specified.

The CDF II detector is described elsewhere [15]. Here we briefly summarize features rele-

8



vant for this analysis. We describe the geometry of the detector using the azimuthal angle φ

and the pseudorapidity η ≡ -ln[tan(θ/2)], where θ is the polar angle of a particle’s trajectory

(track) with respect to the proton beam axis and with the origin at the pp interaction point.

The pseudorapidity of a particle assumed to have originated from the center of the detector

is referred to as ηd. Measurement of charged particle trajectories extends to |ηd| ≤ 2.0, but

for particles with |ηd| ≥ 1.1 not all layers of the detector are traversed, resulting in lower

tracking efficiency and poorer resolution. An electromagnetic and a hadronic calorimeter

with a pointing tower geometry extend to |ηd| ≤ 3.6, but shower maximum position detectors

used in electron identification are only present to |ηd| ≤ 2.8. In addition, the calorimeters

have several small uninstrumented regions at the boundaries between detector elements.

Electrons are usually detected in this analysis by matching a track in the inner tracking

system to an energy deposit in the electromagnetic calorimeter (EM). Muons are detected

by matching a track to a minimum ionizing particle energy deposit in the calorimeter, with

or without associated track segments in the various muon chambers beyond the calorimeter.

We include τ leptons in this analysis only if they are detected indirectly through their decays

to electrons or muons. Lepton reconstruction algorithms are well validated and described in

detail elsewhere [17].

The presence of neutrinos is inferred from the missing transverse energy ~E/T =

−∑

i Ein̂T,i, where n̂T,i is the transverse component of the unit vector pointing from the

interaction point to calorimeter tower i, and Ei is the energy deposit in the i-th tower of

the calorimeter. The ~E/T calculation is corrected for muons and track-based reconstructed

leptons, which do not deposit all of their energy in the calorimeters. The transverse energy

ET is E sin θ, where E is the energy associated with a calorimeter element or energy cluster.

Similarly, pT is the track momentum component transverse to the beam line.

Jets are reconstructed in the calorimeters using a cone algorithm (jetclu [18]) with a

clustering radius of ∆R ≡
√

(∆η)2 + (∆φ)2 = 0.4 and are corrected to the parton energy

level using standard techniques [19]. Jets are selected if they have ET ≥ 15 GeV/c and

|η| <2.4.

We use an on-line event-selection system (trigger) to choose events that pass at least

one high-pT lepton trigger. The central electron trigger requires an EM energy cluster with

ET > 18 GeV matched to a track with pT > 8 GeV/c. Several muon triggers are based

on track segments from different muon detectors matched to a track in the inner tracking

9



system with pT ≥ 18 GeV/c. Trigger efficiencies are measured in leptonic W and Z boson

data samples [20].

For the ℓℓνν analysis we use several mutually exclusive lepton reconstruction categories,

including: three electron categories, seven muon categories, and isolated track-based iden-

tification for leptons which do not lie inside the fiducial coverage of the calorimeter. All

reconstructed leptons must satisfy a calorimeter isolation requirement: the total ET in the

calorimeter towers that lie whithin a cone of ∆R < 0.4 around the lepton, excluding the

tower traversed by the lepton, must be less than 10% of the ET (pT ) of the reconstructed

electron(muon). ZZ → ℓℓνν candidates are selected among the sample of events containing

exactly two leptons of the same flavor and opposite charge, requiring minimal hadronic ac-

tivity, with a maximum of one additional jet in the event with ET ≥ 15 GeV. One of the two

leptons is required to have passed one of the described triggers and have pT ≥ 20 GeV/c,

while for the second we only require pT ≥ 10 GeV/c. The two leptons are required to have

an invariant mass within 15 GeV/c2 of the nominal Z mass [21].

The dominant source of dilepton events is the Drell-Yan process (DY), which has a

cross section many orders of magnitude larger than that of our signal. The main difference

between the signal and the Drell-Yan process is the presence of the two neutrinos in the

signal final state which may lead to a transverse energy imbalance in the detector quantified

by the E/T . Other background contributions come from WW and WZ production, decaying

in their respective leptonic channels, Wγ or W+jets production where photons or jets are

misidentified as leptons, and a small contribution from tt production. The expectation

and modeling of signal and background processes are determined using different Monte

Carlo (MC) simulations including a geant-based simulation of the CDF II detector [22];

cteq5l parton distribution functions (PDFs) are used to model the momentum distribution

of the initial-state partons [23]. The WZ, ZZ, DY, and tt processes are simulated using

pythia [24] while WW is simulated using mc@nlo [25]. Wγ is simulated with the Baur

event generator [26]. Each simulated sample is normalized to the theoretical cross section

calculated at next-to-leading order in QCD. The W+jets background is estimated using a

data-driven technique because the simulation is not expected to reliably model the associated

rare jet fragmentation and detector effects leading to fake leptons. The probability that a

jet will be misidentified as a lepton is measured using a sample of events collected with

jet-based triggers and corrected for the contributions of leptons from W and Z decays. The

10



probabilities are applied to the jets in a W+jets enriched event sample to estimate the

W+jets background contribution to our dilepton sample [27].

We further select ZZ → ℓℓνν events by requiring that the E/T in the event is mostly

aligned along the axis (Ax) of the reconstructed Z → ℓℓ in the opposite direction, selecting

events with

E/T

Ax ≡ −E/T · cos ∆φ(Ê/T , p̂Z
T ) ≥ 25 GeV, (1)

where ∆φ(Ê/T , p̂Z
T ) is the angle between ~E/T and the direction of the reconstructed Z. This

requirement rejects 99.8% of the Drell-Yan background while preserving about 30% of the

signal. The composition of the sample of events passing these requirements is summarized

in Table I, including expectations for other minor backgrounds.

TABLE I: Expected and observed number of ZZ → ℓℓνν candidate events in 5.9 fb−1 of integrated

luminosity, where the uncertainty includes statistical and systematic errors added in quadrature.

Process candidate events

tt̄ 5.8 ± 1.1

DY 881.1 ± 158.2

WW 85.2 ± 8.1

WZ 35.4 ± 5.0

W+jets 42.3 ± 11.3

Wγ 13.9 ± 4.2

Total Background 1064 ± 159

ZZ 49.8 ± 6.3

Total MC 1113 ± 159

Data 1162

In order to improve the signal-to-background ratio further, we use a multivariate tech-

nique relying on the simulated samples of signal and background events. A NeuroBayes c©

neural network (NN) [28] is trained using seven event kinematic variables: the E/T signifi-

cance (E/T /
√

∑

ET [34]), the E/T component transverse to the closest reconstructed object

(E/T sin(∆φ(E/T , ℓ or jet))min), the dilepton invariant mass (Mℓℓ), the E/T

Ax
, the dilepton sys-

tem transverse momentum (pℓℓ
T ), the opening angles between the two leptons in the transverse
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plane (∆φ(ℓℓ)) and in the η − φ plane (∆R(ℓℓ)). These variables are the most sensitive for

signal-to-background separation since they exploit the unique features of ZZ production.

Figure 1 shows the resulting NN output distributions for data and expected signal and back-

ground, in which ZZ signal tends toward higher values and background toward lower values.

Exploiting the good separation of the signal from the background, we measure the ZZ cross

section from a binned maximum likelihood fit of the NN output. The likelihood function in

the fit is the product of the Poisson probability of the observed yield in each bin on the NN

output, given the signal and background expectations.

For the ℓℓνν decay channel, we consider several sources of systematic uncertainty affecting

the expectations for the signal and background processes. The likelihood includes a Gaussian

constraint to account for the systematic uncertainties, treated as nuisance parameters. The

only free parameter in the likelihood fit is the ZZ normalization.

FIG. 1: Neural network output distribution for the processes contributing to the ℓℓνν sample,

scaled to the best values of the fit to the data.
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Uncertainties from measurements of the lepton selection and trigger efficiencies are prop-
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agated through the analysis acceptance. The dominant uncertainty in the final measurement

comes from the acceptance difference between the leading order (LO) and the next-to-leading

order (NLO) process simulation. The uncertainty in the detector acceptance is assessed us-

ing the 20 pairs of PDF sets described in [29]. We assign a 5.9% luminosity uncertainty to

the normalization of MC simulated processes [30]. We include uncertainties on the theoret-

ical cross section of WW [1], WZ [1], Wγ [31] and tt [32, 33]. The uncertainty on W+jets

background is determined from the variation of the jet misidentification factor among sam-

ples using different jet trigger requirements. A systematic uncertainty is assigned to the

dominant DY background due to ~E/T simulation mismodeling and tested in an orthogonal

data sample. An additional uncertainty is considered due to the track resolution on the

E/T

Ax
modeling. All the systematic uncertainties are summarized in Table II. Correlations

between the systematic uncertainties are taken into account in the fit for the cross section.

TABLE II: Percentage contribution from the various sources of systematic uncertainties to the

acceptance of signal and background in the ℓℓνν decay mode result.

Uncertainty Source ZZ WW WZ tt DY Wγ W+jets

Cross section 6 6 10 5 10

MC-run dep. 10

PDF 2.7 1.9 2.7 2.1 4.1 2.2

NLO 10 10 10 10

L 5.9 5.9 5.9 5.9 5.9 5.9

Conversion 10

Jet modeling 2 2.8 7.3 4

Jet misidentification 26.6

Lepton ID eff. 3 3 3 3 3

Trigger eff. 2 2 2 2

E/T modeling 10

E/T
Ax

cut 30a

aAffecting only the dimuon sample.

The likelihood fit of the data yields 48.4+20.3
−16.0 events and a measured production cross
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section σ(pp → Z/γ∗Z/γ∗) = 1.45+0.45
−0.42(stat)+0.41

−0.30(syst) pb, which corresponds to σ(pp →
ZZ) = 1.34+0.42

−0.39(stat)+0.38
−0.28(syst) pb considering the correction factor for the zero-width cal-

culation.

The ZZ → ℓℓℓ′ℓ′ decay mode has a very small branching fraction (0.45%), but also has

smaller background. The efficiency to pass the lepton identification requirements enters the

overall efficiency to the fourth power. Therefore, we optimize the lepton selection for higher

efficiency, accepting a larger rate of jets misidentified as leptons.

For the ℓℓℓ′ℓ′ analysis, the lepton selections used for the ℓℓνν analysis is extended to

include electrons that span an η range beyond the coverage of the tracking system and are

therefore reconstructed based only on the energy deposit in the calorimeter. Each of the

three resulting electron categories is now extended to use a likelihood-based combination of

selection variables rather than using an orthogonal series of requirements. For muons, the

isolation requirement and limits on the energy deposited in the calorimeters are relaxed.

Depending on the lepton category, the efficiency is improved of 5-20% compared to the

previous CDF ZZ cross section measurement [8]. Selection efficiencies are measured in data

and MC simulation using Z → ℓℓ samples. Correction factors are then applied to the signal

simulation obtained from the ratio of the efficiency calculated in the simulation and in the

data.

ZZ → ℓℓℓ′ℓ′ candidate events are required to have four leptons with pT > 10 GeV/c,

at least one of which must have pT > 20 GeV/c and be a lepton that met the trigger

requirements. The leptons are grouped into opposite sign, same flavor pairs, treating the

track-only leptons as either e or µ and the trackless electrons as either charge. For events

containing more than one possible grouping, the grouping with the smallest sum of the

differences from the Z boson mass is selected. One pair of leptons must have a reconstructed

invariant mass within ±15 GeV/c2 of the Z mass, while the other must be within the range

[40,140] GeV/c2.

The only significant backgrounds to the ℓℓℓ′ℓ′ final state come from Z+jets where two

jets are misidentified as leptons and Zγ+jets where the photon and a jet are misidentified as

leptons. These are modeled with a similar procedure to the W+jets background in the ℓℓνν

analysis. A sample of three identified leptons plus a lepton-like jet, 3l + jl, is weighted with

a misidentification factor to reflect the background to the ℓℓℓ′ℓ′ selection. This procedure

double counts the contributions from Z+2 jets because these have two jets, either one of

14



which could be misidentified to be included in the 3l + jl sample, but both of which need

to be misidentified to be included in the ℓℓℓ′ℓ′ sample. A few percent correction is made for

the double counting, and a simulation-based correction is made for the contamination of the

3l + jl sample by ZZ → ℓℓℓ′ℓ′ events in which one of the leptons fails the selection criteria

and passes the jl selection criteria. The resulting background estimate is 0.26+0.53
−0.15 events

where the dominant uncertainty is due to the limited statistics of the 3l + jl sample.

The ZZ → ℓℓℓ′ℓ′ acceptance is determined from the same pythia-based simulation as

is used for the ℓℓνν analysis. The expected and observed yields are summarized in Table

III. Figure 2 shows a scatter plot of the mass for the leading versus subleading pT Z

candidates, showing that the candidates are tightly clustered in the center of the signal

region as expected.

TABLE III: Expected and observed number of ZZ → ℓℓℓ′ℓ′ candidate events in 6.1 fb−1. Uncer-

tainties include both statistical and systematic contributions added in quadrature.

Process expected events

ZZ 9.54±1.24

Z(γ)+jets 0.26+0.53
−0.15

Total expected 9.82 ±1.25

Observed data 14

The dominant systematic uncertainty is a 10% uncertainty on the lepton acceptance and

efficiency which is based on a comparison of the expected and observed yields in a sample

of Z → ℓℓ events. Additional uncertainties include 2.5% on the acceptance due to higher

order QCD effects which are not simulated, 2.7% due to PDF uncertainties, 0.4% from the

trigger efficiency determination, and 5.9% due to the luminosity uncertainty.

In the ℓℓℓ′ℓ′ final state, we observe 14 events, of which we expect 0.26+0.53
0.15 to be back-

ground, resulting in a measured cross-section of σ(pp → Z/γ∗Z/γ∗) = 2.18+0.67
−0.58(stat) ±

0.29(syst) pb, corresponding to σ(pp → ZZ) = 2.03+0.62
−0.54(stat) ± 0.27(syst) pb in the zero-

width approximation.

The two results described above are based on orthogonal data samples, given the ex-

plicitly different requirements on the number of identified leptons in the final state. We

therefore combine the two measurements, using the same likelihood function and minimiza-
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tion procedure applied to the ℓℓνν analysis, taking into consideration the correlations for

the common systematic uncertainties. The combined measured cross section is

σ(pp → ZZ) = 1.64+0.44
−0.38(stat + syst) pb (2)

which is consistent with the standard model NLO calculation σ(ZZ)NLO = 1.4 ± 0.1 pb.

This result is the most precise total cross section measurement of ZZ production at the

Tevatron to date, reducing the uncertainty to below 30%.
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FIG. 2: Two-dimensional distribution of Mℓℓ for the non-leading pT vs leading-pT Z candidates for

the expected signal and background compared to the observed events. In the plot a box is drawn

with area proportional to the number of events expected for that M1
ℓℓ, M2

ℓℓ combination. The green

line cross-shaped region represents the acceptance of the requirements applied to select ZZ events,

while the stars represent the events observed in the data.
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